Search results for "Epidermal Growth Factor"

showing 10 items of 227 documents

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

2016

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

0301 basic medicine030102 biochemistry & molecular biologybiologyEndosomemedia_common.quotation_subjectImmunologyMicrobiologyClathrinCell biology03 medical and health sciences030104 developmental biologyDownregulation and upregulationEpidermal growth factorVirologybiology.proteinEpidermal growth factor receptorInternalizationA431 cellsProtein kinase Cmedia_commonCellular Microbiology
researchProduct

Molecular Determinants of Sensitivity or Resistance of Cancer Cells Toward Sanguinarine.

2018

For decades, natural products represented a significant source of diverse and unique bioactive lead compounds in drug discovery field. In Clinical oncology, complete tumors remission is hampered by the development of drug-resistance. Therefore, development of cytotoxic agents that may overcome drug resistance is urgently needed. Here, the natural benzophenanthridine alkaloid sanguinarine has been studied for its cytotoxic activity against multidrug resistance (MDR) cancer cells. We investigated the role of the ATP-binding cassette (ABC) transporters BCRP/ABCG2, P-glycoprotein/ABCB1 and its close relative ABCB5 in drug resistance. Further drug resistance mechanisms analyzed in this study wer…

0301 basic medicineAbcg2Drug resistance03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCytotoxic T cellcancerPharmacology (medical)SanguinarineEpidermal growth factor receptorOriginal ResearchPharmacologypharmacogenomicsdrug resistancebiologyChemistrylcsh:RM1-950ABCB5phytotherapybioinformaticsMultiple drug resistancelcsh:Therapeutics. Pharmacology030104 developmental biology030220 oncology & carcinogenesisCancer cellCancer researchbiology.proteinmicroarrayFrontiers in pharmacology
researchProduct

Multifactorial Modes of Action of Arsenic Trioxide in Cancer Cells as Analyzed by Classical and Network Pharmacology

2018

Arsenic trioxide is a traditional remedy in Chinese Medicine since ages. Nowadays, it is clinically used to treat acute promyelocytic leukemia (APL) by targeting PML/RARA. However, the drug’s activity is broader and the mechanisms of action in other tumor types remain unclear. In this study, we investigated molecular modes of action by classical and network pharmacological approaches. CEM/ADR5000 resistance leukemic cells were similar sensitive to As2O3 as their wild-type counterpart CCRF-CEM (resistance ratio: 1.88). Drug-resistant U87.MG ΔEGFR glioblastoma cells harboring mutated epidermal growth factor receptor were even more sensitive (collateral sensitive) than wild-type U87.MG cells (…

0301 basic medicineAcute promyelocytic leukemiaBiologyNF-κB03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicinePharmacology (medical)Epidermal growth factor receptorArsenic trioxideTranscription factorOriginal ResearchpharmacogenomicsPharmacologydrug resistancelcsh:RM1-950PromoterAP-1medicine.diseasearsenic trioxidelcsh:Therapeutics. Pharmacology030104 developmental biologychemistryCistromeCell culture030220 oncology & carcinogenesisCancer cellCancer researchbiology.proteinFrontiers in Pharmacology
researchProduct

Dynamic clonal remodelling in breast cancer metastases is associated with subtype conversion

2019

Background: Changes in the clinical subtype (CS) and intrinsic subtype (IS) between breast cancer (BC) metastases and corresponding primary tumours have been reported. However, their relationship with tumour genomic changes remains poorly characterised. Here, we analysed the association between genomic remodelling and subtype conversion in paired primary and metastatic BC samples. Methods: A total of 57 paired primary and metastatic tumours from GEICAM/2009-03 (ConvertHER, NCT01377363) study participants with centrally assessed CS (n = 57) and IS (n = 46) were analysed. Targeted capture and next-generation sequencing of 202 genes on formalin-fixed paraffin-embedded samples was performed. Th…

0301 basic medicineAdultCancer ResearchSkin NeoplasmsBioinformaticsBone NeoplasmsBreast Neoplasmsmedicine.disease_causeMetastatic tumours03 medical and health sciences0302 clinical medicineBreast cancerBreast cancermedicineBiomarkers TumorHumansProspective StudiesPAM50AgedAged 80 and overMutationIntrinsic subtypebusiness.industryHuman epidermal growth factorBrain NeoplasmsClonal architectureHigh-Throughput Nucleotide SequencingClonal remodellingMiddle Agedmedicine.diseasePrognosisGene Expression Regulation Neoplastic030104 developmental biologyOncology030220 oncology & carcinogenesisLymphatic MetastasisCancer cellMutationCancer researchFemaleNeoplasm Recurrence LocalClinical subtypeHeterogeneitybusinessHormoneFollow-Up Studies
researchProduct

Critical Roles of EGFR family members in breast cancer and breast cancer stem cells: Targets for therapy

2016

The roles of the epidermal growth factor receptor (EGFR) signaling pathway in various cancers including breast, bladder, brain, colorectal, esophageal, gastric, head and neck, hepatocellular, lung, neuroblastoma, ovarian, pancreatic, prostate, renal and other cancers have been keenly investigated since the 1980's. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about this pathway and how its deregulation can lead to cancer and how it may be differentially regulated in various cell types. Multiple inhibitors to EGFR family members have been developed and many are in clinical use. Current research often focuses o…

0301 basic medicineCA15-3OncologyEGFR HER2 mIRs Cancer Stem Cells Drug Resistance Metastasismedicine.medical_specialtyEGFRDrug ResistancemIRCancer Stem CellBreast NeoplasmsNOMetastasisMetastasis03 medical and health sciences0302 clinical medicineBreast cancerCancer stem cellInternal medicineCancer Stem CellsHER2Drug DiscoverymicroRNAmedicineCancer Stem Cells; Drug Resistance; EGFR; HER2; Metastasis; mIRs; Pharmacology; Drug Discovery3003 Pharmaceutical ScienceAnimalsHumansEpidermal growth factor receptorPharmacologyCancer Stem Cells; Drug Resistance; EGFR; HER2; Metastasis; mIRsmIRsbiologybusiness.industryEGFR HER2 mIRs Cancer Stem Cells Drug Resistance Metastasis.Drug Discovery3003 Pharmaceutical ScienceCancermedicine.disease3. Good healthErbB Receptors030104 developmental biology030220 oncology & carcinogenesisbiology.proteinNeoplastic Stem CellsFemaleStem cellbusinessSignal Transduction
researchProduct

Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours.

2017

KRAS is one of the most frequently mutated oncogenes in human non-small cell lung cancers (NSCLCs). RAS proteins trigger multiple effector signalling pathways including the highly conserved RAF-MAPK pathway. CRAF, a direct RAS effector protein, is required for KRAS-mediated tumourigenesis. Thus, the molecular mechanisms driving the activation of CRAF are intensively studied. Prohibitin 1 (PHB1) is an evolutionarily conserved adaptor protein and interaction of CRAF with PHB1 at the plasma membrane is essential for CRAF activation. Here, we demonstrate that PHB1 is highly expressed in NSCLC patients and correlates with poor survival. Targeting of PHB1 with two chemical ligands (rocaglamide an…

0301 basic medicineCancer ResearchEGF Family of ProteinsLung NeoplasmsBiologyLigandsProto-Oncogene Proteins p21(ras)03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineGrowth factor receptorRocaglamideEpidermal growth factorCarcinoma Non-Small-Cell LungCell Line TumorProhibitinsGeneticsAnimalsHumansMolecular Targeted TherapyProhibitinMolecular BiologyBenzofuransCell ProliferationRas InhibitorMice KnockoutTNF Receptor-Associated Factor 3EffectorXenograft Model Antitumor Assaysrespiratory tract diseasesCell biologyProto-Oncogene Proteins p21(ras)Gene Expression Regulation NeoplasticRepressor Proteins030104 developmental biologychemistry030220 oncology & carcinogenesisras Proteinsraf KinasesSignal transductionSignal TransductionOncogene
researchProduct

Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody

2016

The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable…

0301 basic medicineCancer ResearchMice SCIDCancer targeted therapy0302 clinical medicineMice Inbred NODEpidermal growth factor receptorPhosphorylationbiologyChemistryImmunoglobulin Fab FragmentsAntibodies MonoclonalGeneral MedicineArticlesProto-Oncogene Proteins c-metHalf-lifeCell biologyOncology030220 oncology & carcinogenesisColonic NeoplasmsMetMolecular MedicineFemalemedicine.symptomSignal transductionAntibodySignal Transductionmedicine.drug_classColonAntibody; Cancer targeted therapy; Fab; Half-life; Met; Protein engineering; Cancer Research; Genetics; Molecular MedicineAntineoplastic AgentsMonoclonal antibody03 medical and health sciencesImmunoglobulin Fab FragmentsProtein DomainsCell Line TumormedicineGeneticsAnimalsHumansFabAntibodyCell growthMolecular biology030104 developmental biologyHEK293 CellsMechanism of actionHepatocyte Growth Factor ReceptorA549 Cellsbiology.proteinProtein engineering
researchProduct

Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment l…

2019

Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD1…

0301 basic medicineCancer ResearchOsteoclastsPlasma cellInterleukin 8ExosomesLigandsMice0302 clinical medicineEpidermal growth factorOsteogenesisMultiple myelomaBone diseaseTumor MicroenvironmentEpidermal growth factor receptorbiologyChemistryAntibodies MonoclonalOsteoblastCell DifferentiationHematologylcsh:Diseases of the blood and blood-forming organslcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensErbB Receptorsmedicine.anatomical_structureOncology030220 oncology & carcinogenesislcsh:RC254-282Amphiregulin03 medical and health sciencesAmphiregulinOsteoclastCell Line TumormedicineCell AdhesionAnimalsHumansMolecular BiologyOsteoblastsEpidermal Growth Factorlcsh:RC633-647.5Epidermal growth factor receptorResearchMesenchymal stem cellInterleukin-8Mesenchymal Stem CellsMicrovesiclesExosome030104 developmental biologyRAW 264.7 CellsCancer researchbiology.protein
researchProduct

Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-gamma

2016

Abstract Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous “astrocytes generated from murine embryonic stem cells (ESC).” These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted G…

0301 basic medicineCell signalingNeurogenesisBiologyInterferon-gammaMice03 medical and health sciences0302 clinical medicineNeural Stem CellsNeurosphereddc:570medicineAnimalsCell ProliferationEpidermal Growth FactorMultipotent Stem CellsCell CycleNeurogenesisMouse Embryonic Stem CellsCell BiologyAnatomyCell DedifferentiationEmbryonic stem cellNeural stem cellCell biologyNeuroepithelial cell030104 developmental biologymedicine.anatomical_structureGene Expression RegulationAstrocytesMolecular MedicineFibroblast Growth Factor 2Stem cell030217 neurology & neurosurgerySignal TransductionDevelopmental BiologyAstrocyte
researchProduct

Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib.

2017

Abstract Background The shift from cytotoxic to targeted chemotherapy led to improved treatment outcomes in oncology. Nevertheless, many cancer patients cannot be cured from their disease because of the development of drug resistance and side effects. Purpose There is an ongoing quest for novel compounds, which raised not only the interest in natural products but also in novel combination therapy regimens. Study design In this review, we report on the inhibition epidermal growth factor receptor (EGFR) by targeted small molecules and their combination with natural products from medicinal plants. Results The combination of erlotinib with artesunate leads to synergistic inhibition of cell grow…

0301 basic medicineCombination therapymedicine.medical_treatmentPharmaceutical ScienceArtesunateDrug resistancePharmacology03 medical and health scienceschemistry.chemical_compoundErlotinib Hydrochloride0302 clinical medicineIn vivoDrug DiscoveryAntineoplastic Combined Chemotherapy ProtocolsMedicineHumansEpidermal growth factor receptorMolecular Targeted TherapyProtein Kinase InhibitorsPharmacologyChemotherapybiologybusiness.industryCancermedicine.diseaseArtemisininsErbB Receptors030104 developmental biologyComplementary and alternative medicinechemistryArtesunate030220 oncology & carcinogenesisbiology.proteinMolecular MedicineErlotinibbusinessmedicine.drugPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct